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Biogeochemical Interactions
and Biodiversity

Valerie T. Eviner and F. Stuart Chapin llI

There has been considerable recent interest in the ecosystem consequences of
global and regional shifts in biogeochemical cycling and the loss of species diver-

sity. Since biogeochemical cycling is the result of an interaction of numerous

organisms, the link between diversity and biogeochemistry is a natural one.

Changes in either diversity or biogeochemical cycling can dramatically influence -
one another, and the large human impact on both has the capacity to compromise

the ecosystem functions on which society relies. 7 ,

A number of significant changes are occurring in the Earth’s biogeochemistry
(Austin et al., Chapter 2, this volume; Galloway, Chapter 14, this volume;
Chapin et al. 2000). Because of these shifts in global and regional biogeochem-
istry, as well as land use changes and the introduction of exotic species, we are in
the midst of one of the largest extinction events in the history of life on Earth, with
extinction rates 100—1,000 times greater than prehuman rates. The ecosystem
response to these multiple biogeochemical shifts depends largely on the response
of the biotic community. For example, shifts in vegetation in response to these
human-induced changes can have ecosystem impacts that are larger and different
in direction than the direct biogeochemical response to these changes (Hobbie
1996; Shaw and Harte 2001). Beyond a shift in composition, loss of diversity can
compromise the capacity of a community to perform ecosystem functions, par-
ticularly in response to multiple stresses (Griffiths et al. 2000; Degens et al. 2001;
Muller et al. 2002).

In this chapter we explore the feedbacks between changes in biogeochemical
- interactions and biodiversity. Plant species richness is the component of biodi-
versity that is most frequently studied in relationship to ecosystem function, but
we include other examples where they are available.
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152 | 1. THEORY

Effects of Changes in Biogeochemical Cycling on Diversity

Shifts in the biotic community in response to a variety of biogeochemical changes
have been well documented (Table 8.1). Deposition of toxic levels of heavy met-
als and SO, can decrease the diversity of plants;-soil microbes; and several other
types of organisms. These decreases in species richness are directional changes
through selection for species that can tolerate levels of pollutants that are poten-
tially toxic to many organisms (Table 8.1)."The differential responses of compo-
nents of the biotic community to these pollutants can have significant impacts on
biogeochemical cycling. For example, heavy metals suppress N,O production
more than NO productian (Holtan-Hartwig et al.-2002). -

Plant diversity substantially decreases in response to chronic N inputs across
a large number of ecosystems thirough seléction for fast-growing plant species and
canopy-dominants and selection against legumes and small-statured species. N
deposition also causes shifts in microbial community composition and diversity
(Table 8.1). Additions of other limiting nutrients in terrestrial systents do not have
as strong an effect on community diversity as does N. For example,-even though
P was the most limiting nutrient to plant growth, P additions did not alter plant
species richness in a chalk grassland, whereas N additions substantially decreased
plant species diversity (Willems, Peet, and Bik 1993). Similarly, in an annual grass-
land, additions of P and K had very little effect on plant community composition,
whereas additions of N decreased species richness (Goldberg and Miller 1990).
These results show that N additions tend to have strong impacts on plant species
diversity, whereas community composition has variable responses to additions of
other nutrients, even if they are limiting. -

Eutrophication by N and P in aquatic systems also tends to decrease the diver-
sity of aquatic organisms and selects for plants that are good competitors at high
nutrient levels and for animals that tolerate low oxygen levels. In both aquatic and
terrestrial habitats, these directional changes in community composition are likely
to determine the ecosystem effects of resource additions (Fridley 2002).

The effects of elevated CO, on plant and microbial community composition
are variable. Elevated CO, often results in a change in plant-and microbial species
composition, but there are no generalizable responses in the nature of species that
are selected for. Several studies, however, have found that elevated CO, increases '
plant species evenness (proportionate distribution of species) (Table 8.1).

Although climate is not specifically a biogeochemical change, increased fluxes
of CO,, CH,;, and N, O into the atmosphere are resulting in warming and possi-
ble changes in precipitation patterns that will likely impact the biological com-
munity. Changing weather patterns will cause directional shifts in species com-
position and diversity, based on the life history of the species (Sternberg et al.
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8. Biogeochemical Interactions and dediv_ersity I 155

1999). Several studies have shown that warming influences plant species compo-
sition through selection for certain plant species (Harte and Shaw 1995; Chapin
and Kerner 1996; Hobbie 1996), although this is not always the case (Price and
Waser 2000). These shifts in vegetation composition are largely responsible for -

ecosystem responses to warming (Hobbie 1996; Saleska, Harte, and Torn 1999;

Shaw and Harte 2001). Similarly, an increase in microbial diversity in response to
warming increases soil C respiration (Andrews et al, 2000), while preferential stim-
ulation of methanogenic bacteria over methane-oxidizers could stimulate .
increased CH, flux from wetland soils (Schlesinger 1997).

Clearly, changes in biotic diversity in response to biogeochemical factors are not
random additions or deletions of species; they are selective changes in species com-
position. Resulting changes in biogeochemical processes may be better explained
by these changes in species composition than by changes in species richness.

The Ecosystem Effects of Species Diversity

- Mechanisms

Many components of biological diversity could be important in determining
ecosystem processes. Most studies have focused on the ecosystem consequences of
species richness within a group of organisms (e.g., plant species diversity or
microbial diversity). The most commonly proposed mechanism for a diversity
effect on ecosystem function is complementarity. Organisms differ in their niches,
including how, when, and where they play their role, and the combination of -
species with different niches can affect ecosystem function in ways that differ from
the effects of any single species. For example, species differences in the type, tim-
ing, or spatial zone of resource uptake can enhance overall community resource
utilization, leading to an increase in plant production. The more unique the
niches of the species are, the greater the diversity effect.

The observed relationships between diversity and ecosystem functions may
also be explained by the “sampling effect” (Aarrsen 1997; Huston 1997). The
sampling effect is based on one or a subset of species with strong ecosystem effects.
In this case, the relationship between species richness and ecosystem function is not
a mechanistic effect of diversity per se, but rather, it is due to an increased statisti-
cal probability of including a particular species in a community of higher diversity.

A third mechanism, “interspecific facilitation” (Cardinale, Palmer, and Collins
2002), has received less attention in the literature. Like complementarity, this
ecosystem effect is a result of the activity of multiple organisms. Whereas com-
plementarity is a function of the accumulated independent effects of the compo-
nent species, in interspecific facilitation, the function and sometimes the existence
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of these species complexes rely on.close interactions among the component
species. Some examples include symbiotic N fixation and substrate degradation
that can only be achieved by a closely associated community of microbes (con-
sortia). Extreme examples are eukaryotic cells and their intracellular units that are
‘endosymbiotic prokaryotes or the descendents of these (e.g., mitochondria,
chloroplasts, S-oxidizing bacteria, methanogens, methane-oxidizing bacteria)
(Caldwell et al. 1997). : _

A fourth alternative is that there is no mechanistic effect of diversity on par-
ticular ecosystem processes; rather diversity and an ecosystem process co-vary
because they are controlled by the same environmental factor. This is not a mech-
anism that can explain direct experimental manipulations of diversity, but it can
be an important consideration when comparing natural systems or experimental
treatments in which species richness is manipulated through a change in envi-
ronmental factors (e.g., Huston 1997; Wardle 2001). For example, when com-
paring community diversity and productivity in unmanipulated natural plots in
very low-productivity environments, the correlation between productivity and
diversity may not be causative but due to the fact that both are limited by the same
resources (Wardle 2001). _

At a mechanistic level, sampling effects, complementarity, and interspecific
facilitation all depend on a mixture of species that differ in a key trait or combi-
nations of traits. These mechanisms are not mutually exclusive, and the impor-
tance of these multiple mechanisms highlights a critical feature of biological
diversity: a given function can be attained through multiple pathways.

The Effects of Biological Diversity on Different Ecosystem Functions

Species diversity can influence many ecosystem processes, but ecosystem processes
differ in their relationships to diversity and/or composition of the biotic com-
munity. The strongest relationships between species richness and ecosystem
processes are for those processes that are directly related to resource utilization
(reviewed in Eviner and Chapin, in review). A number of studies have observed
a positive relationship between plant richness (Naeem et al. 1994; Tilman et al.
1997; Hooper and Vitousek 1998; Mulder, Uliassi, and Doak 2001) or mycor-
thizal richness (van der Heijden et al. 1998) and plant productivity. Increased pro-
ductivity in response to increased plant species richness can be mediated through
complementarity in the use of various resources, but this relationship is often weak
and is usually better explained by the presence of highly productive species
(Naeem et al. 1994; Tilman et al. 1997; Hooper and Vitousek 1998; Spehn et al.
2000a; Mulder, Uliassi, and Doak 2001). Plant species richness also contributes
to nutrient and water retention, but again, species composition usually plays a
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~ larger role than species number (Nacem et al. 1994, 1995; Tilman, Wedin, and
Knops 1996; Tilman et al. 1997; Hooper and Vitousek 1998). ,

Much as plant species richness can enhance productivity through comple-
mentarity of resource use, a diverse microbial community may enhance decom-
position of litter or soil organic matter through the same mechanism (Solanius
1981; McGrady-Steed, Harris, and Morin 1997; Dobranic and Zak 1999).
Decomposition rates are not, however, always enhanced by increased diversity of
microbial communities because the identity of species plays a larger role than their
number (Finlay, Maberly, and Cooper 1997). For example, selection for certain
- microbes can enhance decomposition of plant residues despite decreases in micro-
bial community diversity (Griffiths et al. 2000). Microbial community composi--
tion can also affect the degradation of specific compounds (Janzen, Dormaar, and
McGill 1995; Colombo, Cabello, and Arambarri 1996; De Boer, Klein Gun-
newiek, and Parkinson 1996). There are many substrates, particularly environ-
mental contaminants, that cannot be degraded by isolated populations of
microbes, but only by consortia (Rozgaj and Glancersoljan 1992; Caldwell et al.
1997), particularly in anaerobic environments (Palmer et al. 1997). Composition
of the microbes within consortia can dramatically alter degradation rates (Wol-
faardt et al. 1994), indicating that the effects of a community on degradation are
due not only to the number of species, but also to their composition.

Similar to decomposition, rates of nitrification, denitrification (Martin,
Trevors, and Kaushik 1999; Griffiths et al. 2000), and methane oxidation (Willi- ‘
son et al. 1997; Griffiths et al. 2000) relate to' microbial diversity and are also
strongly influenced by the composition of the microbial community (Landi et al.
1993). Overall, it is clear that microbial community composition can have strong
impacts on ecosystem function (Colombo, Cabello, and Arambarri 1996; De
Boer, Klein Gunnewiek, and Parkinson 1996; Balser, Kinzig, and Firestone 2001).

While microbial diversity can enhance decomposition and nutrient cycling,
plant composition generally has a stronger effect on these processes, because the
~ species composition of the plant community determines the substrates available
for microbial utilization. Although the identity of plant species has strong effects
on these processes, there is little reason to hypothesize an effect of plant species
richness on these processes. All experimental evidence indicates that decomposi-
tion rates are not related to plant species richness, but to plant composition
(Naeem et al. 1995; Wardle, Bonner, and Nicholson 1997; Bardgett and Shine
1999; Hector et al. 2000; Spehn et al. 2000b; Knops, Wedin, and Tilman 2001).
Several of these studies found that decomposition rates of litter mixtures could not
be predicted based on rates of the component species alone (nonadditive effect),
suggesting the importance of substrate mixtures, but these were both positive and
negative effects and were largely due to specific combinations of substrates
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(species composition), not an increase in the number of litter types (Wardle and
Nicholson 1996; Wardle, Bonner, and Nicholson 1997; Hector et al. 2000).
There have been a few mechanistic hypotheses linking plant species richness and
decomposition rates. Higher diversity treatments tend to have higher percent
cover and soil water use, resulting in lower temperature and moisture for decom-
position. Although these directional microclimate changes would be predicted to
have a negative effect on decomposition, the magnitude of these microclimate
effects on decomposition rate was extremely small (Hector et al. 2000). Similarly,
plant substrate quality has a larger impact on nutrient mineralization than does
plant richness. Although plant species richness can stimulate N cycling through
an increase in substrate quantity (Spehn et al. 2000b) or decrease nitrification rates
through higher plant NH, uptake (Niklaus et al. 2001b), these effects tend to be
weaker than the mﬂuence of substrate quality on N cycling. This accounts for the
frequent observation that the role of richness in ecosystem furiction is over-
whelmed by species composition and environmental factors (Fridley 2002;
Loreau 1998; Loreau 2000; Wardle, Bonner, and Barker 2000).

~ Although species composition is key to a mechanistic understanding of the role
of the biotic community in determining ecosystem processes, diversity per se is
important to ensuring stability of these species effects. Different functions and
environmental tolerances are usually distributed independently among species.
There may be redundancy in a function, but it is unlikely that there will be over-
lap in the suite of functions associated with any species, including functional roles,
environmental tolerances, physiological requirements, and microhabitat prefer-
ences (Beare et al. 1995). Species diversity is critical for the maintenance of these
roles under fluctuating conditions. Diversity provides a community with multi-
ple ways of performing a function, providing stability in biogeochemical processes
despite shifts in environmental conditions (McNaughton 1977; Rao and Willey
1980; Chapin and Shaver 1985; McGrady-Steed, Harris, and Morin 1997;
Naeem and Li 1997; Griffiths et al. 2000; chens et al. 2001).

Effects of Species Composition on Interactions
among Biogeochemical Cycles

Biogeochemical cycling is largely mediated through the biotic community, which
both supplies and metabolizes substrates.. Specms composition largely controls the
ratios at which elements cycle in systems and the potential of these element cycles
to interact as a result of the suite of traits, functions, and environmental prefer-
. ences of the species present in a-.community.

G, N, S, and P are not cycled in simple stoichiometric ratios because these ele-
ments are mobilized and stabilized by different mechanisms (McGill and Cole
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" 1981). N is bonded directly to the C skeleton of organic compounds, and thus
mineralization of N is a by-product of the intracellular breakdown of organic com-
pounds by microbes for energy (C). This accounts for the strong relationship
between litter C:N and rates of decomposition and net N mineralization. Because
P is not directly bonded to the C skeleton of organic matter but is associated with
C through ester bonds, mineralization of P occurs through enzymatic activity,
which cleaves P from organic matter. Thus mineralization of P from organic mat-
ter is not directly related to litter C:P ratio but is controlled more directly by plant
and microbial need for P P can also be accessed by organisms through production
of charged organic compounds that can free PO, from binding sites in the soil or
through accumulation of calcium oxalates that increase P availability by decreas-
ing soil calcium. The control of sulfur release from organic matter is intermedi-
ate between N and P because it occurs in organic matter in both C-bonded and
ester-bonded forms. Thus, organic S can be released through both microbial C
metabolism and directly by biotic demand for S.

Because these elements are stabilized by different mechanisms, the effect ofan
organism on any one of these elements can be independent of its effect on other
elements. For example, grassland plant species with very similar effects on N
cycling can differ substantially in their effects on P cycling (Hooper and Vitousek
1998; Eviner 2001), water fluxes, and soil C (Eviner and Chapin 2001). Similarly,
the influence of the plant community on nutrient retention differs for different
elements (Naeem et al. 1994, 1995). The functions of species can also vary inde-
pendently from their environmental tolerances (Eviner and Chapin 2001), so
shifts in environmental conditions are not likely to select for species with specific
suites of functional effects. A notable exception to this is that soil fertility levels
often select for plant species that reinforce these levels of fertility (Chapin 1980).
Species not only differ in their effects on multiple elements, but also in how they
couple multiple elements. The ratios of elemients required for optimal growth can
differ among species, and many organisms can store nutrients that are in excess at
one time and later use them for growth.

The stoichiometry of decomposers can greatly influence rates of N mineral-
ization. Fungj, with.a high C:N ratio (15:1-45:1), will mineralize relatively more
N than bacteria, which have a low C:N ratio (3:1-5:1) and higher requirement
for N (Paul and Clark 1995). For both herbivores and decomposers, the ratio of
nutrient release from a given substrate will be determined by the requirements of
those organisms for the different nutrients. A species with a higher N:P require-
ment will recycle N at a relatively lower concentration than a species with a lower
N:P requirement (Sterner, Elser, and Hessen 1992; Elser et al. 2000). The balance -

. of nutrients released will change because of shifts in both the species providing the
substrate (producers) and the consumers.
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The ratios of element uptake and resorption by plants can have substantial
effects on biogeochemical interactions, since plant litter is the major substrate for
element recycling and fuels many biogeochemical processes. Plant species differ in
the ratios of elements taken up to produce new biomass and resorbed prior to lit-
ter fall (Aerts and Chapin 2000), so species differences in these properties alter
" rates at which different elements cycle. For example;, many studies have linked

plant species effects on decomposition and N cycling to litter C:N ratios (Taylor,
Parkinson, and Parsons 1989; Wedin and Tilman 1990; Scott and Binkley 1997;
Maithani et al. 1998; Mueller et al. 1998; Mafongaya, Barak, and Reed 2000).
Species differences in C quality of litter also have strong effects on rates of
decomposition and mineralization (Melillo, Aber, and Muratore 1982; Aber,
Melillo, and McClaugherty 1990; Palm and Sanchez 1991; Taylor et al. 1991;
Stump and Binkley 1993; Schimel et al. 1996), because secondary compounds can.
inhibit microbial activity (Lodhi and Killingbeck 1980; Thibault, Fortin, and
Smirnoff 1982). These secondary compounds can be more important than C:N
 ratios in explaining plant species effects on biogeochemical cycling (Eviner 2001).
Although plant regulation of N and C dynamics has largely focused on litter
quality, up to a tenfold difference in rates of net N mineralization can occur
_ because of a threefold difference in labile C inputs by different species (Wedin and

- Pastor 1993). These labile C inputs are generally simple C compounds that are
readily available as an energy source to microbes and can accelerate decomposition
of recalcitrant litter and soil organic matter (Sallih and Bottner 1988; Mueller et
al. 1998; Bottner, Pansu, and Sallih 1999). These recalcitrant C compounds are
often not used as an energy source, and microbes often require labile C to provide
energy for the metabolism of these recalcitrant compounds in their search for N.
Labile C will stimulate decomposition of a recalcitrant compound under N-
limited conditions but not under high N availability (van Ginkel, Gorissen, and
Van Veen 1996). These examples clearly demonstrate that the biogeochemistry of
C is affected not only by an interaction of nuttients, but also by the interaction
of different types of C compounds that are produced by different plant species.
Plant composition can also influence biogeochemical cycling by altering
microclimate conditions such as temperature, pH, soil moisture, and O, concen-
trations (van Vuuren et al. 1992; Mack 1998; Eviner 2001; Caraco and Cole
2002). For example, in waterlogged soils or sediments, plant species that enhance
soil O, concentrations have been responsible for enhanced decomposition of
organic matter (Allen et al. 2002), increased nitrification rates (Engelaar et al.
1995), decreased CH, formation (Grosse, Jovy, and Tiebel 1996), and lower con-
sumption of SO, leading to decreased mobilization of Fe and mineralization of
P (Christensen 1999). Interactions of plant inputs also determine the fate of
nitrate in anaerobic environments by regulating the concentrations of NO, and
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organic C available to denitrifiers. The amount of C in relation to NO, is posi-
tively correlated to the amount of N, versus N,O produced by demmﬁcanon At
high levels of labile C, however, the fate of NO can shift from denitrification to
dissimilatory nitrate reduction to ammonium (DNRA) (Fazzolari, Nicolardot, and
Germon 1998; Silver, Herman, and Firestone 2001; Yin et al. 2002).

Ultimately, a plant species effect on biogeochemical cycling reflects its suite of
traits. For example, an interaction of litter, microclimate effects, and labile C
inputs determines plant species effects on net N mineralization and nitrification,
soil C dynamics, and decomposition, and these traits vary independently among
species (Eviner.2001). This independent distribution of multiple ecosystem func-
~ tions among species is a key driver of the effect of the biotic commumty on bio-
geochemical interactions.

Biogeochemical interactions are also related to specnes—spemﬁc responses of
microbes to combinations of substrates and environmental conditions. For exam-
ple, the effect of N in limiting lignin decomposition depends on the species of
white rot fungus present, because N inhibits some species less than others
(Schimel 1995). Similarly, variation in méthane oxidation with N concentrations
depends on the composition of the microbial community (Groffman and Boblen
1999). Ultimately, the suite of functions and environmental tolerances of a given
species will determine the interaction of elements, their stoichiometry, and the
interactions of biogeochemical cycling with environmental conditions. By alter-
ing environmental conditions and the ratios of available elements, any given

“species can also influence the distribution and activity of other organisms, further
altering biogeochemical interactions. Thus, it is not surprising that the stoi-
chiometry of elements is highly uncoupled in both terrestrial and- aquatic eco-
systems. C

Biogeochemical Interactions and Species Mixtures

The interactions between biogeochemical cycles are mediated by the suite of
organismal traits being expressed, and the nature of traits has a much larger role
in determining biogeochemical cycling than does the diversity of traits. There is
no clear relationship between species richness and biogeochemical interactions
because the organismal traits that determine the dynamics of different elements
do not consistently occur together when species are compared. The ecosystem
effects of species mixtures often cannot be predicted based on the patterns of
species effects in monocultures (nonadditive effects), as seen in processes ranging
from decomposition (Naeem et al. 1995; ‘Wardle and Nicholson 1996; Wardle,
Bonner, and Nicholson 1997) to N-cycling (Blair, Parmelee, and Beare 1990; War-
dle, Bonner, and Nicholson 1997; Finzi and Canham 1998; Nilsson, Wardle, and
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Dahlberg 1999; Eviner 2001) to plant growth (Newman et al. 1979; Lawley, New-
man, and Campbell 1982; Lawley, Campbell, and Newman 1983; Nilsson, War-
dle, and Dahlberg 1999). Just as the ecosystem effects of a species depends on an
interaction of traits that a given species exhibits, these trait combinations have the
same effect on biogeochemical cycling when they are due to the mixture of mul-
tiple species, each of which exhibits some of these traits (Eviner 2001). Some trait
combinations, however, are unique to species mixtures, seldom occurring within
a single plant species (e.g,, litter with recalcitrant C and high N content). Non-
additive effects of species mixtures are mediated by an interaction of particular
traits of particular species, not simply by a diversity of traits. Nonadditive effects
of species mixtures can also be due to shifts in species traits resulting from the iden-
tity of the neighboring species. For example, nonadditive effects of plant mixtures
on N cycling in California annual grasslands relate to shifts in litter quantity and
quality, labile C inputs, and microclimate effects when species are grown in mix-
ture versus monoculture (Eviner 2001). Nonadditive effects of plant mixturescan
also be mediated through shifts in the activity and distribution of other organisms
that play key roles in biogeochemical cycling (Blair, Parmelee, and Beare 1990;
Williams and Alexander 1991). For example, N and C dynamics in plant mixtures
were nonadditive functions of the component monocultures because earthworms
responded nonlinearly to the plant mixtures (Saetre 1998). v

All of these examples demonstrate that the rates and interactions of biogeo-
chemical cycles can best be understood by focusing on the composition of organ-
isms and the traits they exhibit, not simply on species number, because combi-
nations of specific organismal traits mediate elemental fluxes.

Interactions between Biodiversity and
Biogeochemical Interactions

Ultimately, an interaction of species and biogeochemical cycles determines
ecosystem processes, and species diversity can influence ecosystem responses to
biogeochemical changes by influencing the pool of species that can respond to
varying conditions. For example, high-diversity plant communities have a higher
enhancement of net primary production (NPP) in response to elevated CO,
(Niklaus et al. 2001a; Reich et al. 2001; He, Bazzaz, and Schmid 2002) and N
(Fridley 2002; He, Bazzaz, and Schmid 2002) than do low-diversity communities.
Plant richness, however, does not always enhance ecosystem CO, assimilation
(Stocker et al. 1999), and species composition plays an important role in deter-
mining these responses. The diversity-induced enhancement of NPP in response
to elevated CO, in a calcareous grassland only occurred in the early years of the
experiment, when CO, increased growth of stress-tolerant, noncompetitive
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species. These species decreased over time in the elevated CO, plots (Niklaus et
al. 2001a), and with this shift in plant composition, the dxvers:ty—CO interaction
disappeared.

These studies clearly show that communities with high species richness are
more likely to contain species that can positively respond to enhanced resource
availability. A natural extension of this logic would suggest that a loss of species
richness could compromise ecosystem function in response to environmental
stresses owing to the presence of fewer species able to tolerate the stressful condi-
tions. Many studies have shown that decreases in diversity in response to a single
environmental stress do not compromise ecosystem function, because of the abil-
ity of other species to compensate for the function of the lost species. Several stud-
ies have shown, however, that these less diverse microbial communities cannot
maintain ecosystem function in response to additional environmental stresses
(Griffiths et al. 2000; Degens et al. 2001; Mauller et al. 2002) and are also less able
to respond to subsequent positive changes, such as additions of labile substrates
(Muller et al. 2002). These results are particularly striking because all three of these
examples are from soil microbial communities, which are assumed to contain
ample diversity to buffer any change and still maintain function.

These studies emphasize that, although several species may be able to play the
same ecosystem role under stable conditions, a diversity of organisms is critical for
maintaining that ecosystem role under changing conditions, and loss of diversity
can dramatically compromise ecosystem function. This decreased function occurs
because species that have similar functions can have very different environmental
tolerances. Thus one environmental stress can decrease diversity through selection
for species with specific tolerances, compromising the ability of the remaining
community to respond to another stress.

It is essential to consider the relative importance of changes in biogeochemi-
cal processes versus shifts in diversity on ecosystem processes. For example, there
has been much debate over the importance of plant species richness to produc-
tivity. Although experimental evidence has indicated that species richness can
positively affect production, cross-site comparisons of natural communities usu-
ally indicate that the productivity-diversity relationship is a bell-shaped curve
(Huston 1997; Wardle 2001). In extreme resource-limited environments, both
productivity and species richness tend to be low and are limited by the same
resources. Both species richness and productivity increase in ecosystems with
moderate resource availability. In systems with extremely high resource availabil-
ity, productivity is high, but species richness tends to be low. In low-resource or
extreme environments, there are not many organisms that can cope with the con-
ditions that limit production. At the other extreme, high N availability in terres-
trial environments strongly selects for species that are fast growing and highly com-
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petitive. A similar trend would be expected in many aquatic systems in response

to P availability. Over fluctuating conditions, a diversity of plants allows produc-

tion to be somewhat stabilized by providing species that can tolerate these vary-

ing conditions. Sustained differences in environmental conditions, however, can

strongly select for species that are best adapted to those conditions, decreasing
diversity. These communities may be optimized to their current conditions but

may also have less flexibility in the face of other environmental changes.

Conclusion

In this chapter we have given numerous examples where species composition and
richness alter biogeochemical processes. In processes influenced by resource use,
complementarity of species functions can account for the effects of species rich-
ness, but the strength of this effect is determined by the extent to which species
differ in their functional traits. Overall, the composition of the biotic community
plays a much stronger role than species richness in determining biogeochemical
cycling. The importance of composition is further highlighted because shifts in the
biotic community due to biogeochemical changes alter species richness through
selection for certain species. Suites of organismal traits determine elemental stoi-
chiometry and environmental tolerances of species, which then determine how
element cycles interact. For example, plant species can differ significantly in their
effects on environmental conditions and the stoichiometry of elements. These
suites of traits greatly affect the activity and composition of the consumer com-
munities. The elemental composition of the consumer community dictates the
stoichiometry and rates of nutrient release from plant litter, and the processes
mediated by the microbial community are sensitive to the relative availability of
elements. Thus, organism-induced variation in nutrient forms and concentrations
can differentially affect almost every biogeochemical flux.

The vast majority of research linking species diversity and ecosystem processes
has focused on this relationship under a relatively constant set of conditions. In
these experimental communities the effect of species richness on ecosystem
processes saturates at a low species number, and species composition tends to have
a larger effect than species richness. Ecological theory, and a handful of experi-
ments that have tested it, show that over changing conditions, the maintenance
of ecosystem processes depends on a diversity of species. Species have unique com-
binations of functions, environmental preferences, and species interactions, and
this suite of traits determines how a species responds and maintains itself, its
functions, and its interactions under different conditions. There is very little true
redundancy in the overall role playcd by species when accountmg for these suites
of traits.
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